Nenda kwa yaliyomo

Mzunguko wa kaboni-silicate

Kutoka Wikipedia, kamusi elezo huru
                                                      

Makala hii ina dalili ya kutungwa kwa kutegemea programu ya kompyuta kama vile "Google translation" au "wikimedia special:content translation" bila masahihisho ya kutosha. Watumiaji wanaombwa kuchunguza tena lugha, viungo na muundo wake. Wakiridhika na hali yake wanaweza kuondoa kigezo hiki kinachoonekana kwenye dirisha la kuhariri juu ya matini ya makala kwa kutumia alama za {{tafsiri kompyuta}} .

Mzunguko wa jiokemia ya kaboni-silicate (pia unajulikana kama mzunguko wa kaboni isokaboni) unaelezea mabadiliko ya muda mrefu ya miamba ya silicate hadi miamba ya kaboni kwa hali ya hewa na mchanga, na mabadiliko ya miamba ya kabonati kurudi kwenye miamba ya silicate kwa metamorphism na volkano. [1] [2] [3] Kaboni dioksidi huondolewa kutoka angahewa wakati wa uzalishaji wa madini yaliyokauka na kurudishwa angani kupitia volkano. Katika mizani ya muda ya miaka milioni iliyopita, mzunguko wa kaboni-silicate ni jambo muhimu katika kudhibiti hali ya hewa ya Dunia kwa sababu inadhibiti viwango vya kaboni dioksidi na kwa hiyo joto la kimataifa. [3][4]

Kiwango cha hali ya hewa ni nyeti kwa mambo ambayo yanabadilisha ni kiasi gani cha ardhi kinafunuliwa. Sababu hizi ni pamoja na usawa wa bahari, topografia, litholojia, na mabadiliko uoto asilia. [5] Zaidi ya hayo, mabadiliko haya ya kijiografia na kemikali yamefanya kazi sanjari na nguvu ya jua, iwe kutokana na mabadiliko ya obiti au mabadiliko ya nyota, ili kubainisha halijoto ya uso wa dunia . Zaidi ya hayo, mzunguko wa silicate ya carbonate umezingatiwa kuwa suluhisho linalowezekana kwa kitendawili cha vijana dhaifu cha Sun. [6]

  1. Urey, H. C. (1952). The planets: their origin and development. Mrs. Hepsa Ely Silliman Memorial Lectures.
  2. Berner, Robert; Lasaga, Antonio; Garrels, Robert (1983). "The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years". American Journal of Science. 283 (7): 641–683. Bibcode:1983AmJS..283..641B. doi:10.2475/ajs.283.7.641.
  3. 3.0 3.1 Walker, James C. G.; Hays, P. B.; Kasting, J. F. (1981). "A negative feedback mechanism for the long-term stabilization of Earth's surface temperature". Journal of Geophysical Research: Oceans (kwa Kiingereza). 86 (C10): 9776–9782. Bibcode:1981JGR....86.9776W. doi:10.1029/JC086iC10p09776. ISSN 2156-2202.
  4. Walker, James C. G.; Hays, P. B.; Kasting, J. F. (1981). "A negative feedback mechanism for the long-term stabilization of Earth's surface temperature". Journal of Geophysical Research: Oceans (kwa Kiingereza). 86 (C10): 9776–9782. Bibcode:1981JGR....86.9776W. doi:10.1029/JC086iC10p09776. ISSN 2156-2202.
  5. Walker, James C. G. (1993). "Biogeochemical Cycles of Carbon on a Hierarchy of Timescales". Biogeochemistry of Global Change: Radiatively Active Trace Gases Selected Papers from the Tenth International Symposium on Environmental Biogeochemistry. Boston, MA: Springer. ku. 3–28. doi:10.1007/978-1-4615-2812-8_1. ISBN 978-1-4613-6215-9.
  6. Berner, Robert; Lasaga, Antonio; Garrels, Robert (1983). "The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years". American Journal of Science. 283 (7): 641–683. Bibcode:1983AmJS..283..641B. doi:10.2475/ajs.283.7.641.